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A procedure is described by which a set of expansion functions is generated 
for the trilocal wave function. The first 49 functions in the set are listed, 
along with matrix elements of the Hamiltonian that are generated through 
this same procedure. 

1. I N T R O D U C T I O N  

In  the previous article in this set (Clapp et al., 1978), which will be referred 
to as I, the secular equation for the trilocal structure was derived and solved. 
The auxiliary parameters  A and/~ were found to satisfy the equations (I.4.5a) 
and (I.4.5b), in order that  the structure should move relativistically as a 
particle with the rest mass m, but the secular equation did not  itself place any 
requirements on m, except that  m 2 should lie in the range between zero and 
nine, inclusive o f  these limits. 

The curve which showed cos (3~) as a function o f m  contained horizontal  
tangents at m = 0 and rn = (9/33) 1/2. The significance o f  these two special 
mass values will emerge later in the analysis. 

The present article will be concerned with the expansion of  the trilocal 
wave function in terms of  an infinite set o f  or thogonal  functions, each of  
which satisfies the phase-space boundary  condition given previously in 
0.2.1 t). 

2. REST SYSTEM EXPANSION 

The trilocal wave function can be viewed as lying in four tiers, corre- 
sponding to the r-spin projections with M,  = • _32, + �89 - �89  and - 5 -  Within 
any one o f  these four  tiers the centroid-time wave equation (I.2.8a) couples 
together the or thogonal  functions in the expansion set. At  a later stage a new 
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operator will be introduced which will couple together functions on different 
tiers. 

Initially, we will restrict the solutions to the rest system, with 

k = 0 (2 .1 )  

We will also restrict our attention to the leading portion of the wave function, 
considered as a power-series expansion in the two relative-time variables t, 
and t o, which were defined in (I.2.2). That  is, we will consider the part  of  the 
full wave function that remains when we set k, tr, and t D all equal to zero. 

Antisymmetry will be required. On the two outer tiers, M~ = + ~, anti- 
symmetry must come via space and rr spin; with three quanta in the structure 
there can be no function that is nonzero at the center of  the structure where 
r = p = 0 .  

On the two inner tiers, M~ = + �89 we can use both �9 spin and ~ spin for 
antisymmetry, and include in the expansion a function which does not vanish 
for r = p = 0. For the upper of  these two inner tiers, we can define this 
innermost function by 

~bi~l/2 = Noho(K~)l~i~+l/2 2c(1 ) _ cp+~/2 9.8(1)] 

where 
No = K3/212-(6~/2)1 

factor for each function, 

(2.2) 

(2.3) 

which gives each is a common normalizing 
function the dimension of (length) -3/2, so that  its square is a volume 
density. 

The hyperspherical radial variable ~ is defined by 

~ z  = 2r 2 + 3p2/2 = (rl - r2) 2 + (r2 - rs) 2 + (r3 - rl) 2 (2.4) 

The function ho(z) is a hyperspherical Bessel function, analogous to the 
familiar spherical Bessel function jo(z). As in Clapp (1978), the set of  func- 
tions h,(z) will be defined in such a way that the composite functions each 
satisfy the phase-space boundary condition (I.2.11). The functions h,(z) are 
defined by 

hdz) = 8 z - - - 2 J . + d z )  (2.5) 

in terms of the ordinary Bessel functions. These h. satisfy the recursion rela- 
tion 

1 
h~(K~) = 2n + 4 [h~_l(K~) + K2~Zhn+l(x~)] (2.6) 

Differentiation of the hn gives 

d h,(,r = - ~ h ,  + I(K~) (2.7) 
d ~  
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The a-spin functions 2c(1) and 2~(1) are the functions defined in Clapp 
(1961) as 2c(1)1/2 and 2b(1)1/2. These can be represented as 8-component column 
vectors. For  the top component,  the three a spins are all positive. The next 
component  has al~ negative, a2z and ~az positive. The pattern can be repre- 
sented by the format  

1 2 3 

+ + + 

- + + 

+ - + 

+ + - 

+ 

- -  J r "  - -  

+ 

(2.8) 

which was given earlier as (2) of  Clapp (1961). 
The 2S a-spin function 2b(1) has the two components 

o 

0 

i 

--1 
2b(1)+1t2 - _ _  

0 

0 

0 

0 

0 

0 
2b(1)-1/2 -- _ _  

0 

--1 

1 

(2.9) 

0 0 
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The other 2S o-spin function has the two components 

~r 

0 

- - ' a  

0 

2 ~ ( 1 ) + 1 / 2  = _ _  

2 

- 1  

- 1  

0 

0 

0 
2c(1)-1/2 = - -  (2 .10)  

0 - 2  

0 1 

0 1 

0 0 

The function ~b~-1/2 also involves two z-spin functions. The r-spin func- 
tion bp+l/2 is analogous to 2b(1)+lJ2 in (2.9), but with the superscript o 
changed to ~-. The r-spin function ~ + 1/2 is similarly analogous to 2c(1) + 1t2 in 
(2.10), again with the superscript changed from a to ~-. 

We can also use the cyclic forms for the z-spin and o-spin functions. We 
can write 

2+(1) = (1/2) 2c(1) [i(3)~/2/2] 2b(1) (2.11a) 

2-(1) = (1/2) 2c(1) - [i(3)t/2/2] 2b(1) (2.1 lb) 

This gives us 

2+(1)+~/2 = _ _  

_ _ ~ .  m o" 

0 0 

1 0 

co 0 

co2 0 

2+(I)-1/2 

0 - 1  

0 --co 

0 - -  0 ) 2  

(2.12) 

0 0 
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and 

0 

1 

co 2 

co 

2-(1)+i/~ - _ _  

- - - G  

0 

0 

0 

0 

27 

2-(1)-1'2 -- - -  (2.13) 

0 - 1  

0 m s  

0 --60 

0 0 

These functions correspond to (28-31) of Clapp (1961). 
As for the cyclic forms of the T-spin functions, we will want to use a 

different phasing, in order to simplify the formulas that will later be used for 
families of expansion functions. We will define 

B z - - , . ~  

0 0 

1 0 

oJ 0 

o3 2 0 

+I~+1 /2  _ _ _  +1p-1 /2  _ _ _  

0 1 

0 

0 6o 2 

0 0 

(2.14) 



28 

and 

-1~+1/2 = - -  

0 

1 

t.O 2 

Odl 

0 

0 

0 

0 

- p - 1 / z  = _ _  

0 

0 

0 

0 

1 

O) 2 

CO 

0 

C l a p p  e t  a l .  

(2.15) 

We will also define 

s r + 312 = 

7 

0 

0 

0 

0 

0 

0 

0 

S F + I ] 2  = - -  

0 

0 

0 

0 

0 

(2.16a) 
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~i , -1/2  _ 

0 

0 0 

0 0 

0 0 

si,-3/2 _ 

1 0 

1 0 

1 0 

0 (3) 1;2 

$ 

0 

(2.16b) 

With  these definitions, we can rewrite ~b;" 1/2 in the form 

~b +112 = N o [ 2 i / ( 3 ) l ~ 2 ] h o O c N ) [ - P + l / 2  2+(1) - + r  +1/2 2-(I)1 (2.17) 

This function, as noted above, belongs to the upper o f  the two inner tiers. 
There will be a similar function, which we can write as ~bi -1/2, belonging to the 
lower o f  the two inner tiers, where we have M;  = - �89  In  a full trilocal 
structure, these will have separate coefficients, which we can denote by 
C1+ 112 and Ci- 112. 

We will want  to define the two operators 

~-+ = (rl~20"a~)(rlr + oJr2~ + oJ2~'a~)/2 (2.18a) 

�9 - = (~'lCr2~rs~)(rl~ + ~o%'2~ + co-a~)/2 (2.18b) 

These operators act on the ~--spin functions (2.14-2.16). They annihilate the 
outer-tier functions ' P  a a/2. However,  acting on the inner-tier functions, they 
permute them cyclically according to the scheme 

~-+ s I ' •  = + I ' + l J 2  

T+ + p •  = -~4-112 

7+ - I~•  = sFa-ll2 

r -  sI'*l/2 = - I  '• (2.19a) 

T- +I ~• = sI ' . I /2  (2.19b) 

T - - I ' ~112  = +I "~1t2 (2.19c) 

Thus,  within these inner tiers, the two operators (2.18) satisfy the operator  
relationships 

~-+~-- = 1 = (~.+)3 = (~.-)a (~.+)2 = r -  @-)2 = ~.+ (2.20) 
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which are the same identities satisfied by the complex numbers  o~ and ~o 2, 
given previously in (I.2:5). 

Along with the operators (2.18), we will want  to use the a-spin operators 
defined by 

a s = o l  -Jr- a 2  + O 3 O + = o 1 + r  2 + r  

u -  = u l  + wzn2 + wna (2.21)  

We can then write the centroid wave equation, as specialized to the M~ = + �89 
tier, in the form 

where 

wqb+l/2 : H+l/%b+l/2 (2.22a) 

H +1/2 = H ~  1/2 + H +I12 (2.22b) 

n ~  1/2 = ( 1 / 9 ) ( a S . k -  r §  - . k -  r - o  + .k) (2.22c) 

H +1/2 = (1 /9 iK) ( - r+os -V  - - r - o S . V  + + 0 + . V -  
+ a - . V  + - r + o + . V  + - r - o - - V - )  (2.22d) 

In  the rest system, specified by (2.1), H~ + lj2 in (2.22c) will vanish, leaving only 
the relative par t  o f  the Hamil tonian,  H + z~2 in (2.22d). When  this operator  
acts on the initial function ~b + it2, as given in (2.17), two other functions are 
generated. Operat ion on each of  these regenerates (2.17), together with other 
new functions in the expansion o f  qb + 1/2, which is the por t ion o f  the wave 
function lying on this upper-middle tier. 

3. N O R M A L I Z A T I O N  

In  the rest system, the energy w reduces to the rest mass m,  and the wave 
equat ion (2.22a) simplifies to 

mqb +1/2 = H~I/2aP +1/2 (3.1) 

When  the operator  in (3.1) is applied to the initial function (2.17), and to the 
succession of  functions that  are generated, a matrix version o f  this operator  
is constructed, with this set o f  functions as the basis system. 

The functions are first generated with arbitrary normalizat ion factors. 
The matrix version o f  the relative Hamil tonian operator  is then not  a sym- 
metrical matrix. However,  the matrix can be forced into a symmetrical form 
through  the introduction o f  normalizat ion factors to accompany the separate 
functions. This normalizat ion is a relative one that  takes the normalizat ion o f  
the initial function (2.17) as a given quantity. 

We should note here that  the usual picture o f  a normalized wave function 
does not  apply, since the initial function (2.17), along with each o f  the 
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functions generated by the operator Hg  1/2, is not square-integrable. In this 
theory we are working with waves that converge to a center and then diverge 
to infinity. These spherical waves are no more square-integrable than are the 
plane waves which are utilized in quantum-mechanical scattering calcula- 
tions. In analogy with the artificial large box that is introduced to provide a 
normalization for the plane waves, we might introduce an artificial large 
sphere, with a radius of  the Hubble distance or some such length characteriz- 
ing the observable universe. However, for the present analysis we are con- 
cerned only with relative normalization, not with absolute normalization, so 
we can postpone consideration of the latter, and deal only with the former. 

When we adjust normalization factors to make the relative Hamiltonian 
in (3.1) a symmetrical matrix, we find that there are usually more conditions 
to be satisfied than there are adjustable factors. The extra conditions provide 
welcome checks on the algebra. 

4. LIST OF FUNCTIONS 

The first 49 of the inner-tier trilocal basis functions are listed in Appendix 
A. Sixteen of  these, the ones that incorporate the z-spin function ~P, will also 
appear in the two outer tiers, though with separately adjustable coefficients. 

Sixteen a-spin rotational functions were introduced in Clapp (1961), 
where they were given the mnemonics 

2b(1) 2~(1) 2O(r) ~(r) 2b(p) 2~(p) 
~(ir • O) ~~ • O) 4(it • ~) ~(rr) 

*(r) 4(p) 
*(0e) 

(4.1) 

abbreviations: 

( + )  = [2r 2 - 302/2 + i2(3)l/2r.p] (4.2a) 

( - )  = [ 2r2 - 3 ~ 2 / 2  - i2(3) 1/2r'o] (4.2b) 

[ ] = 4 '(rr) + 3 4(pp) (4.3a) 

[+]  = 4 '(rr) - 3 ~(t~) + i2(3) I'2 '(rt~ + tor) (4.3b) 

[ -  ] = 4 4(rr) - 3 4(pp) _ i2(3)1,2 4(r p + or) (4.3c) 

r + = r + i(3)1/2p/2 (4.4a) 

r -  = r - i(3)~t2p/2 (4.4b) 

Cyclic versions of  the doublet functions are formed through (2.11) and 2p 
analogs of (2.11). Linear combinations of these and other functions from (4.1) 
also appear in the basis functions listed in Appendix A. 

Certain groupings appear frequently, and have been given the following 
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A few of the functions are given in two forms, the second being the 
cyclic-notation form analogous to (2.17). For the most part, only the cyclic 
version is given, because of its compact character and its pertinence to the 
organization of these functions into families, as will be discussed in the next 
article in this set. 

5. MATRIX FORMS OF WAVE EQUATIONS 

Appendix B contains 36 rows of the rest-system wave equation (3.1), in 
the matrix form that uses the functions of Appendix A as basis functions. As 
indicated in (3.1), this is an inner-tier matrix applicable specifically to the 
upper-middle tier, with Me = + �89 However, a simple reversal of the sign of 
the left-hand side of each equation in Appendix B will make each equation 
there apply to the lower-middle tier, with Me = -�89 The appropriate specifi- 
cation of Ms needs to be made in the ~--spin functions contained as factors in 
the basis functions of Appendix A. 

It will be noted that the matrix rows in Appendix B are written in terms 
of the coefficients Cj instead of the functions ~bj. The matrix elements were 
originally obtained through operations on the functions ~bj. This gives a set 
of equations~ the first of which is 

H+ 1 ~  1~ = 2 1 ~ 1 ~  + 2 1 ~  1~ (5.1) 

once the appropriate relative normalization has been incorporated into the 
functions ~bj. This normalization ensures that the matrix is symmetrical. 

The coefficients Cj satisfy a matrix equation whose matrix is the transpose 
of the matrix that is generated by operations such as (5.1). However, since the 
matrix has been made symmetrical through the choice of suitable normaliza- 
tion factors, the transposed matrix is unchanged, and the same matrix 
elements appear in the Cj equations of Appendix B as would appear in a 
listing of ~bj equations such as (5.1). 

The operator H +~/2 in (2.22d) couples even-parity functions to odd- 
parity functions, and vice versa. Thus it is elementary to use some of the 
equations of Appendix B to eliminate the odd-parity coefficients (that is, the 
Cj's associated with ~bj's which have odd parity) from the remaining equa- 
tions. What is obtained is the set of equations listed in Appendix C. These are, 
in effect, the rows of the matrix version of the quadratic wave equation 

m2q~ + 1/2 = (H+ 1/2)2~ + ~/2 (5.2) 

that can be derived from (3.1). 
That is, these are the even-parity rows of (5.2). As we will see later when 

this equation system is solved, we will not need to use the analogous odd- 
parity rows of (5.2). 
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6. SUMMARY 

The expansion of  the trilocal wave function has been started, with this 
initial expansion restricted to the rest system and to a time slice within which 
the two relative-time variables tr and t o are equal to zero. 

The wave function lies in four tiers, specified by the [ componen t  o f  the 
total r spin. For  the upper-middle tier, where Me = +�89 the procedure for 
generating the expansion has been described. This involves repeated applica- 
t ion o f  the appropriate  Hamil tonian operator,  given in (2.22d). Acting on 
one function, this operator  generates a number  o f  terms which include 
groupings recognized as functions already defined, and other terms which are 
grouped as tentative functions. Acting on the tentative functions, the operator  
generates previous functions and new functions. The associated matrix 
elements should form a symmetrical matrix, and this requires that  normaliza- 
t ion factors be adjusted, and sometimes that  terms be regrouped until the 
correct  groupings are found. 

Forty-nine o f  the functions obtained in this way are listed here in 
Appendix A. The matrix elements linking them, in the matrix version o f  the 
linear wave equation, are included in Appendix B. The quadratic wave 
equat ion also has a matrix version, and Appendix C contains the matrix 
elements linking those functions in Appendix A which have even parity. 

Further  use o f  these functions and matrices will occur in later articles in 
this set. 
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APPENDIX A: 49 TRILOCAL BASIS FUNCTIONS 

~b~ = Noho(K~)EH? 2~(1) - q~ 2b(1)] 
= iNo2(3~ /2 /3 )ho (K~)[ -P  2+(1) - +F 2-(1)] 

~b2 = iNo2~/2Kh~(K~)~P[2 2b(r) - 2~(0)] 
= No2(C/2 /3 )Kh~(K~)  ~P [2 + ( r - )  - 2 - (r +)] 

~b 3 = N o ( C / 2 / 3 ) K h ~ ( K ~ ) [ -  F ~(r +) - + P *(r-)] 

4'4 = NoZ(C/2 /3)Kh~(K~)[  +F 2+(r+) - - P  2 - ( r - ) ]  

~b~ = iNoZ(6 t [u /3 )K2h2(x~) [ -F  Z - ( l ) ( + )  - +p 2+(1) ( - ) ]  

~6 = iNo2(6t/2/3)KUh2(K~) sF [z - (1)( - ) - 2 + (1)( + )] 
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~h8 = 

~b9= 

~I0 

~ii : 

~ 12  = 

~ /13  : 

~ /17  : 

t19  : 

~.t20 : 

f i 22  : 

~ /28  : 

~ /24  = 

~ /25  = 

~ 2 7  - '~ 

~ 28  : "  

I / /29 

~80 

N o 4 ( 2 ~ / 2 ) K 2 h 2 ( ~ ) [ + F  2 - ( i t  • p) + - Y  2+( i  r • p)] 

N o 4 ~ h ~ ( ~ )  ~r  ~(ir • p) 

iNo(15~/2/5)x2h2(K~)(-  F [ -  ] - + F [ +  ]) 

iNo8(3~/2)~Ph3(K~)[+F 4 ( i r - r  x p) + - P  ~( i r+r  • t~)] 

)Vo2(6z/2/3)K3h3(~){ + I ' [4(r  +)( - ) - 4(r - ) ~ 2 / 2  ] 

- - r p ( r - ) ( + )  - -  ~ ( r+)~2 /2 ]}  

No2(3~/2/3)~3h3(x~) q ~ [ ~ ( r + ) ( + ) -  4 ( r - ) ( - ) ]  

No4(6~/2/3)K3h3(x~)( + I ~ [~ + ( r - ) ( + )  - 2 + (r  + ) ~ 2 / 2 ]  
- - r [ 2 - ( r + ) ( - )  - 2 - ( r - ) ~ 2 / 2 ] )  

No4(6z/2/3),?h3(K~) ~ r { [ 2 + ( r + ) ( - )  - 2 + ( r - ) ~ 2 / 2 ]  
- [ U - ( r - ) ( + )  - 2 - ( r + ) ~ 2 / 2 ] }  

No4(3zI2/3)K3h3(K:~)[ + F 2- (r + ) ( +  ) - - P 2 + ( r - ) ( - ) ]  

No4(3~/2/3)x3h3(~:~)[ + r 2 -  ( r - ) ( - )  - - F 2 + (r + ) ( + ) ]  

iNo2x~h~(~) ~F [~ + ( 1 ) ( - ) z  _ z -  ( 1 ) ( + ) z ]  

iNo4,~h~(~)[-I" ~+(1) - + F  ~ - ( 1 ) ] [ ( + ) ( - )  - ~ / 2 ]  

iNo2~h~(~)[ + F ~ + ( 1 ) ( + ) z  _ - F 2 -  ( 1 ) ( - ) ~ ]  

- N o 2 ( 6 ~ ) ~ % ~ ( ~ )  ~(ir • t~)[ + F ( + )  + - 1 7 ( - ) ]  

- N o 4 ( 6 ~ / ~ ) ~ h ~ ( ~ )  ~F[z+( i r  • t~) (+)  + ~ - ( i r  • t ~ ) ( - ) ]  

N o 4 ( 6 ~ / ~ ) ~ h ~ ( ~ ) [ + F  2+( i t  • 0 ) ( - )  + - P  ~ - ( i r  • p ) ( + ) ]  

iNo3~/Z~h~(~) sp[[  + ] ( _ )  _ [ _ ] ( +  )] 

iNo3(7~/z/7)K~h~(~) [ + U [ -  ] ( - )  - - F [ + ] ( + ) ]  

iNo(ZlO~/~/7)~h~(x~){-F[[ ] ( - )  - [ - ] 2 ~ / 5 ]  

- + r [ [  1 ( + ) -  [ + ] 2 ~ / S ] }  

N o 2 ~ / ~ h ~ ( ~ ) [ -  F ' ( r - ) ( - ) z  - + V *(r + ) ( + ) z ]  

N o 6 ~ / ~ h ~ ( x ~ )  ~I'{~(r - )  [( + )~ + 2( - ) ~ / 3 ]  
- ' ( r + ) [ ( - )  z + 2 ( + ) ~ z / 3 ] }  

N o Z ( 3 Z / u ) ~ h ~ ( ~ ) { [ -  I '  ' ( r  +) - + r ~ ( r - ) ] [ ( + ) ( - )  - ~ / 3 ]  
- [ - F  ' ( r - ) ( + )  - + r  ' ( r + ) ( - ) ] ~ / 3 }  

N o 2 ( 2 ~ ' z ) ~ h s ( ~ )  ~F [~ - (r  - )( - )z - z + (r  +)( + )~] 

No2(6  ~ /u )x~hS(~){  + Y [u - (r  + ( - )~ - u - (r  - ) 2 ( -  ) ~ u / 3 ]  
- - r [ ~ + ( r - ) ( + ) ~  - ~ + ( r + ) 2 ( + ) ~ / 3 ] }  
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~32 

t34 

fi35 = 

1•87 
tfi88 : 

~39 

~t40 

~b,_~ = 

~t48 

~45 

I/t46 

~47 

~ 9  

N o 4 ( 3 ~ 2 ) ~ S h ~ ( ~ )  ~V{[ z -  ( r  +) - ~ + ( r - ) l [ ( + ) ( - )  - ~ / 3 ]  

- [ Z - ( r - ) ( + )  - ~ + ( r + ) ( - ) ] ~ z / 3 }  

No2(6~ /=)x~h~(x~){ -  F [2 + (r  +)( - )= - ~ + (r  - )2(  - ) ~ / 3 ]  

- + V [ ~ - ( r - ) ( + y  - Z - ( r + ) 2 ( + ) ~ 2 / 3 ] }  

No2(2*/=)x~hs(K~) [ + e ~ + ( r - ) ( - ) ~  - - V z -  ( r  + ) ( +  )z] 

N o 4 ( 3 ~ ) K s & ( ~ ) { [ + P  =+(r  +) - -  - P  ~ - ( r - ) ] [ ( + ) ( - )  - ~ ' / 3 ]  

- [ + P  Z + ( r - ) ( + )  - - e  = - ( r + ) ( - ) ] ~ / 3 }  

iNo24~Shs(K~) ~P[~( i r - r  x p ) ( - )  

iNo 12(6 ~/=)~c~h~(~){- 1 ~ [~(ir-  r x 
- +p[~( i r+r  

+ ~( i r+r  x p ) ( + ) ]  

p ) ( + )  - ~( i r+r  • p )~2 /3]  

x p ) ( - )  - ~ ( i r - r  x O).@z/31} 

iNo4(3~/2/3)x6h6(K~)[-P 2+(1) ( - )3  - +p 2- (1) (+)3]  

iNo4(3~/2)K6h6(K~)[-P 2 - ( 1 ) ( + )  - +p 2 + ( 1 ) ( - ) ] [ ( + ) ( - )  - 2~4/3] 

iNo4(3~'z)~:6h6(,~) q ~ [ 2 - O ) ( -  ) - 2 + ( 1 ) ( + ) ] [ ( + ) ( - )  - 2 ~ / 3 ]  

iNo4(3 ~/2/3)K~h6(~) [- F 2 + (1) (+)3  _ + F 2 - (1)( - ) 3 ]  

No8(3~/2)K6h6(K~)[+I? 2+(ir x p)(+)2  + - F  2-( i r  • p)(_)2]  

No( -24)x6h6(K~)[+P 2-( i r  • p) + -1" 2+(ir x O ) ] [ ( + ) ( - )  - ~4/3]  

No8(3z/2)K~h6(~) q~[2+(i r • p ) (_)2  + z - ( i r  • p)(+)2]  

N o ( -  12)(2~'2)K6h6(K~) ~P ~(ir x p ) [ ( + ) ( - - )  - ~ / 3 ]  

No4(3~/2)K6h~(~) '(it • O)[+ F ( - ) z  + - P(+)u]  

iNo6(138~'~/23)~Oh~(x~){[- Y [ -  ] - + F[ + ] ] [ ( + ) ( - )  - ~ / 3 ]  
- [ - r [ + ] ( - ) ~ -  + r [ - ] ( + ) q ~ / 2 }  

iNo(2*~=)K6h6(,~) *p[[ + ](+)~ _ [ -  ] ( - )= ]  

iNo2(21z'u/3),,:~h~(K:~){-P[[ 1 ( + ) = -  [+]4(+) .~=/7]  
- +F[[ ] ( - ) ~ -  [ -  ] 4 ( -  )~z/7]}  

iNo7(966~/~/69),c~h~(~:~){[ + F [ +  ] - - 1" [ -  ] ] [ ( + ) ( - )  - ~ ' / 4 9 ]  
+ + F [ [ - ] 8 ( + ) 2 / 7 -  [ ]92(+)~u/49]  
- - F [ [ + ] 8 ( - ) u / 7 -  [ ] 9 2 ( - ) ~ : / 4 9 ] }  

APPENDIX B: 36 ROWS OF THE INNER-TIER 
LINEAR WAVE EQUATION 

mC1 = 2112C2 + 2112C3 

mC2 = 2~2C~ + (1/3)C5 - (1/3)C6 + (1/3)C7 + (2~/2/6)C8 + (10~/2/3)C9 
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mC~= 

m C ~ =  

m C ~ =  

m C ~ =  

m C 7 =  

m C ~ =  

m C ~ =  

mC~o = 

m C l l  = 

mC12 

mC13 = 

mC14 = 

mC~5 = 

mC16 = 

/ 

mC~ .= 

mC~8 --- 

2 ~ / 2 C ~  - (1/3)C~ - (2/3)C6 + (1/6)C7 + 5(2~/2/6)Cs + (10~/2/6)C9 

(2/3)C5 + (1/3)C6 + (2/3)C7 + (2~/2/3)C8 + (10~/2/6)C9 

(1/3)C2 - (1/3)Ca + (2/3)C~ - (1/3)C~z - 2(2~/2/3)Cz2 
- (2 /3)C~ - (1 /3)C~ + ( 2 ~ / 3 ) C ~  - (2"~/3)C~o 

- (1 /3 )C~ - (2/3)C~ + (1/3)C, - (2 /3)C~ - (2"~/3)C~ 
- (1 /3)C~ + (1/3)C~, + 2 ( 2 ~ ' ~ / 3 ) C ~  + (2"~/3)C~o 

( 1 / 3 ) Q  + (1/6)C~ + (2/3)C~ + (6z'2/6)Czo - (1/6)C~z 
+ (2/3)C~3 + (1/3)Cz4 

(2~/z/6)C2 + 5(2x/2/6)C3 + (2~/2/3)C4 - (3~/2/3)C~o 
- 5(2~/2/6)C~ + (2zt2/3)C~3 + (2z'2/6)C~4 

(10~/2/3)C2 + (10~/2/6)Ca + (10~/~/6)C, - (15~/2/5)C~o 
- (IO~/e/30)Cx~ - 2(5~'2/15)C~2 + (10~'2/30)C~a 
+ ( 1 0 ~ / 2 / 1 5 ) C ~  - 2 ( 5 ~ 2 / 1 5 ) C ~ 5  - 4 ( 5 ~ z 2 / 1 5 ) C ~ 6  

(6~/~./6)C~ - (3~/~/3)C~ - (15~/~/5)C~ - (2~/2/6)Qo 
+ (2~/~/3)C~ + (2~'~/6)C~ - (3~'~/3)Qa - (210t '~/30)Qa 

- (1 /3 )C~  - (2/3)Ce - (1/6)C7 - 5(2~'e/6)Ca - (10~/~/30)C~ 

+ (6~/z/3)C~s - 5(3z'~/9)C~o - 2(3~'z/9)Czz 
- (3~/~/9)C~z - (2~ /~ /3 )C~  - (351'~/15)C~ 

- 2 ( 2 ~ / ~ / 3 ) C ~  - (2~/z/3)C~ - 2(5~/15)C~ + 2(3~/~/9)C~7 
+ 4(3~/~/9)Cz9 - 5(6~/~/18)C~o + (6~/~/18)Cz~ 
+ (6~/~/9)C~ + (21~/~/9)C~ + (70z/z/30)Q~ 

- (2 /3 )C~  - (1/3)C~ + (2/3)C~ + ( 2 ~ / 3 ) C .  
+ (10~/2/30)C~ - (3~/~/9)C~o + 2(3~/~/9)C~.~ 
+ 4(3~/~/9)C~ - 2(2~/z/3)C~ + (35~ /~ /15 )C~  

- (1 /3 )C~  + (1/3)C~ + (1/3)C7 + (2~/~/6)Ca + (lO~ZZ/15)C. 
- (6~/~/3)C~s - 2(3~/~/9)C~o - 2(3~/9)C2~ 
+ 2(3a/~/9)C~ - (2a/~/3)C~a + 2(35~'s/15)C~ 

(2~/~/3)C~ + 2(2z/~/3)C~ - 2(5~r + 2(3 t~ /9)C~ 
- 2(3~/z/9)C~ + (6~/z/18)Czo + 2 ( 6 ~ / 9 ) C ~  
+ ( 6 ~ / 9 ) C ~  - 2(21~'~/9)C~ + (70~/~/30)C~ 

-(2~/~/3)Ca + (2~/~/3)C~ - 4(5~/~/15)C9 + 4(3~/z/9)C~7 
+ 2 ( 3 ~ / 9 ) C ~  + (6~/~/9)C~o + (6~/~/9)C~ 
- (6~/~/9)Cz2 - (21~/s/9)C~ + (70~'e/15)Czs 

2(3a/~/9)C~ + 2(3~/z/9)C~s + 4(3~/~/9)C~ 
- 2(2~z~/3)C~ - (6z/~'/9)C~7 + (2~/3)Cz~ 
- 2(6~/z/9)Cao + (6~/~/9)C~e + (2~/z/3)Caa 

(6~/~/3)C~ - (6~/~/3)C~, + 2(3a'z/3)Czs - 2(3t/z/3)Caa 



Triloeal Structures. II. Expansion 37 

mC19 = 

mCzo = 

4(3~,2/9)C~2 - 2(3~/2/9)C~5 + 2(3~J2/9)C~o 
- (2~/2/3)Q 8 - 2(6~/2/9)C27 - (2~/2/3)C29 

- (6~/2/9)C3o - (6~/2/9)C32 + 2(2~/2/3)C33 

-(2~/2/6)C~o - 5(3~/2/9)C~ - 5(6~,2/18)C~2 - (3~2/9)C~3 

- 2(3~,2/9)C~ + (6~/2/18)C~5 + (6~/2/9)Cz6 - 5(3~/2/9)C27 

+ 5(6~/2/18)C28 + 2(3z/2/9)C3o + (6~/2/9)Cs~ - (3~/~,/9)C32 

- (6~/2/18)C34 + (6~/2/6)C3~ + (1/3)C36 

mC2~ = (2~/~/3)C~o - 2(3~/2/9)C~ + (6~/~/18)C~z + 2(3~/z/9)C~ 

- 2 ( 3 ~ / 9 ) C ~  + 2(6~/z/9)C~ + (6~/~/9)C~o + (3~/~/9)C~7 

+ (6~/z/9)Czo + 2(3~/~/9)C~o + (6~/~/9)C~ - 4(3~/~/9)C,z 

+ (6~/~/9)C~ + ( 6 ~ / 6 ) C ~  - (2/3)C~o 

m C ~  = (2~/~/6)C~o - ( 3 ~ / 9 ) C ~  + (6~/~/9)C~ + 4(3~/~/9)C~ 
+ 2(3a/~/9)Ca~ + (6z/~/9)C~a - (6~/~/9)C~a + 2(3~'~/9)C~v 

+ (6~/~/18)Cza - 2(3~/~/9)C~o - (6~/z/9)Ca~ - 2(3a/z/9)Ca~ 

+ 2(6~/~/9)Ca~ + (6~/~/3)Caa - (1/3)C,a 

m Q a  = -(3~/~/3)C~o - (2~/~/3)C~ - 2(2~/~/3)C~ - (2z/~/3)C~ 
+ (1/3)Cza + (1/3)Ca~ - (2/3)C,~ + (6z/~/3)C~ 

mCg.~ = (21~/~/9)C~ - 2(21~/z/9)C~ - (21~/~/9)C~ + 2(14~/~/21)Ces 

+ (42~/~/63)Cz7 - 4(14~/z/21)C~ - (42~e/63)C~o 

+ 2(42~/~/63)Ca~ + 2(14~/z/21)C~ - (21~/~/7)C~ 

mCe~ = -(210~/~/30)C~o - (35~/z/15)C~ + (70~/~/30)C~ + (35~ /15)C~a  

+ 2(35~/~/15)C~ + (70~/~/30)Cz~ + (70~/~/15)C~ - (35~/~/21)Cz7 

- ( 7 0 ~ / 4 2 ) C ~  - 2(35z/z/21)C~o + (70~z /21)C~ + (35~/~/21)C~ 
- (70~/z/42)C~ + (70~/~/14)C~ - (105~/~/21)C~ 

mCg.~ = - 2 ( 2 ~ / z / 3 ) C ~  - (2~/z/3)C~ + 2(14~/~/21)C~, 

- (6~/~/6)C~7 - (6~/~/3)C~o + (2z/~/12)C~ 
- (2~/e/6)C~a - 5(2~/~/12)C~s + (1/2)C~7 + (42~/z/28)C~a 

mC~7 = - ( 6 ~ / z / 9 ) C ~  - 2(6~/~/9)C~ - 5(3~/z/9)Qo + (3~/~/9)C~ 

+ 2 ( 3 ~ / 9 ) C z z  + (42~/~/63)C~ - (35~/~/21)C~s + (2~/~/3)Ca~ 

+ (2~/~/6)C,~ - (6~/~/6)C~ + (6~/e/12)C~, - 5(6~/z/12)C~ 
- 7(23~/~/138)C~ - 3(14~'~/28)C~a - 3(161~/~/161)C~ 

mC~a = 2(3~/~/3)C~s + 5(6~/~/18)C~o + (6~/~/9)Qa + (6~/~/18)C~ 
+ (1/3)C~a - (70~/~/42)Czs - (1/3)Caa - ( 2 /3 )C ~  - ( 1 /6 )C ~  
- 5(2~/~/6)Caa + 4(46~/z/69)C~s - 3(322~/~/322)C~ 

mC29 = (2~/~/3)C~7 - . ( 2 ~ / ~ / 3 ) C ~  - 4(14~/z/Zl)Cz~ 
+ (6~/~/3)C~ + (6~/z/6)C~o - (2~/~/6)C~ 
- (2~/~/6)C~ - (2~/z/6)C~s + (1 / 2 )C~  - (42~/~/14)C~, 
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mCao = -2(6~/2/9)C~7 - (6~/2/9)C~9 + 2(3~/2/9)C2o + 2(3~/2/9)C=~ 

- 2(31/~/9)C=~ - (42~/~/63)Q~ - 2(35~/~/21)C~ + (2z/=/6)Caa 
- (2~/~/6)Ca~ + (6~2/6)C~1 - (6~/~/3)C~a - (61/~/12)C~5 

- 7(23~/2/69)C~ + 3(141/~/28)C~ - 6(161~=/161)C~ 

mCa~ = - 2 ( 3 ~ / 2 / 3 ) C ~  + (6~/~/9)C~o + (6 ' /= /9)Q~ - (6 ' /2 /9 )Q~ + (1/3)C=a 

+ (70~/=/21)Q~ - (1/3)Caa + (1/3)Ca~ + ( 1 / 3 ) C ~  + (2' /2/6)C,~ 
- 8(461~=/69)C4~ 3(322~/~/161)C~a 

mCa2 = (61/~/9)C~7 - (6x/z/9)C~ - (3~/=/9)Czo - 4(3~/2/9)C~, 

- 2(3~/~/9)C~ + 2(42z~=/63)Q~ + (35~/~/21)Q~ + (2*/~/6)Caa 

+ (U/~/3)Ca~ + (61/z/6)C~ + (6~/~/6)C~a + (6~/~/6)C~ 
+ 7(231/~/138)C~ - 3(14~/z/14)Ca8 + 3(161~/z/161)C~ 

mCaa = (2~/~/3)C~ + 2(21/2/3)C~ + 2(14~/2/21)C~ 
- (6~/2/6)Ca7 + (6~/~/6)C~o + (2~/~/3)C~ 
- (2~/~/6)C~a + (2~/~/12)C~ - C~7 + (42~/~/28)C~a 

mCa~ = -(6~/~/18)C~o + (6~/~/9)C~ + 2(6~/~/9)C2~ 
- (2/3)C~a - (70~/2/42)C~ + (2/3)Ca.  + (1/3)Ca~ 

- ( 2 / 3 ) C ~  - (2~/~/3)C~ + 4(46~/~/69)C~ - 3(322~/~/322)C~ 

mCa~ = (61/~/6)C~o + ( 6 ~ / 6 ) C ~  + (6~/2/3)C~2 - (211/~/7)C~ 
+ (70~/2/14)C~5 - (3~/z/3)C~ + (3~/2/6)C~a + (3~z/6)C~a 

+ 3(46~/~/46)C~ + 3(7~/~/14)C~a - 6(322~/~/161)C~ 

mCa~ = (1/3)C2o - (2/3)C21 - (1/3)Cz2 + (6~/~/3)Cza - (105~z/21)C2~ 
+ (6~/~/12)C~ - (31/~/6)C~ + (69~/~/23)C~ + 15(483~/2/322)C~ 

A P P E N D I X  C: 15 R O W S  O F  T H E  I N N E R - T I E R  

Q U A D R A T I C  W A V E  E Q U A T I O N  

0 = (4 - m2)C1 - 2~/2C6 + (21/2/2)C7 + 2C8 + 5'12C~ 

0 = [(8/3) - m2]C5 + (4/3)C8 + 4(10~/2/15)C9 - 2(6~/2/9)C~7 
-- 4(6~/2/9)C,9 + 2(31/2/3)C2o - (31/2/3)C22 + 2(2~'2/3)C2a 

- (42~/2/9)C24 - 2(35~/2/15)C25 

0 = - 2 ~ ' 2 C ,  + (4/3)Ca + [(8/3) - m21C6 - 4(1W2/15)C9 
+ 2(61/2/9)C~7 - (6~/2/3)C~a - 2(6~/2/9)C~9 + 2(3~/2/3)C2o 

+ (31/2/3)C2~ + (2z/2/3)Qa - 2(42~2/9)C2~ + 2(351/2/15)Q5 

0 = (2~/2/2)C1 + [(4/3) - m2]C7 + 2(21/2/3)C8 + (10~'2/5)C9 
- (6~I2/6)C~8 - (31/2/9)Q5 + 2(3~/2/9)Q1 
+ 4(3~/2/9)C22 - 2(2~'z/3)C2a + (351/2/15)C25 
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0 = 2C1 + 2(21/2/3)C7 + [(11/3) - m2]C8 + 4(51/2/5)C9 

- 2(3~/2/3)C18 + 4(6~/2/9)Qo + (6~2/9)C21 

+ 2(6~/2/9)C22 + (1/3)C2a + 2(701/2/15)C25 

0 = 5~/2C1 + 4)101/2/15)C5 - 4(10~/2/15)C6 + (10~/2/5)C7 + 4(51/2/5)C8 
+ [(43/15) - m21C9 - 8(15~/2/45)C~7 - (15~/2/15)C~a - 4(15~/2/45)C~9 

+ (301/2/30)Qo - 2(30~/2/15)C2~ + 2(51/2/15)C23 

+ 2(105~/2/45)Q4 + (14~/2/30)C25 

0 = -2(61/2/9)C5 + 2(61/2/9)C6 - 8(15~/2/45)C~ + [(8/3) - m 2 ] C 1 7  
+ (4/3)C~9 - 8(7~/2/21)C2~ + 8(210~/2/105)C25 + (3~/2/3)C87 

- (31/2/9)Ca8 + (3~/2/9)C39 + 2(3~'2/3)C~o + (1/2)C~3 + C ~  
+ 7(138~/~/207)C~ - (2~/2/2)C~7 - (21~,2/7)C~ + 2(966z/2/161)C~ 

0 = -(61/2/3)C~ - (6~/~/6)C7 - 2(3~/~/3)C~ - (151/~/15)C9 + (4 - mZ)C~a 

- 4(210~/~/35)C2~ - 2(3~/~/3)Ca9 - (3~'~/3)C~2 - 2(6 ' /~ /3)C~ 
+ 8(138~/~/69)C~6 - 3(9661/2/161)C~ 

0 = -4(6~/~/9)C~ - 2(6~/~/9)C~ - 4(15'/~/45)C9 + (4/3)C~7 

+ [(8/3) - m~]Ca~ + 8(71/s/21)Q~ + 4(210a/2/105)Q5 - (3~/~/3)Ca7 
- 2(3~/2/9)C~a - (3z/~/9)Ca~ + (3~/~/3)C~o + (1 /2 )C ~  + C ~  
+ 7(1381~/414)C,~ - 2~/2C~ 7 + (211/2/7)C~a + (966~2/161)C~ 

0 = 2(3z~2/3)Q + 2(3~/~/3)C6 - ( 3 ~ / 9 ) C 7  + 4(6~/~/9)C8 + ( 3 0 ~ / 3 0 ) C 9  
+ [(1 I /3)  - m2]C~o + ( 2 / 3 )C~  - ( 2 / 3 ) C ~  + 2(6~/~/3)C~a 
- 2(14~/2/7)C~ + 2(105~/2/105)C~ - (6~/2/3)Ca~ - (6~/~/3)Ca~ 

+ (21/~/6)C~ + (6'/~/18)C~2 - (2z/~/3)C~a - 4(3z/~/9)C~ 

+ 2(2~/~/3)C~ + 5(69z/~/138)C~ + (421/~/7)C~a + (483~/~/322)C~9 

0 = (3~/~/3)C6 + 2(3~/2/9)C7 + (6I/~/9)C~ - 2(30z/~/15)C9 + (2 /3 )Qo  
+ [(8/3) - m~] C~  + ( 4 / 3 ) C ~  - (61/z/3)C2a - 2(14~/~/7)Cz~ 
+ 2(105~/~/105)C~5 - (6a/z/6)Ca9 - (2~/~/3)C~ - (6~/z/9)C~ 

- (21/~/3)C~a - (3~/~/9)C~ - (2~/~/3)C~ - 4(69~/~/69)C~ 
+ (42~/2/7)C~ - 10(483~/161)C~9 

0 = - ( 3 ~ / 3 ) C s  + 4(3~/~/9)C7 + 2(6~/~/9)Ca - (2/3)Czo + (4/3)Czl 

+ [(8/3) - mZ] C~  - 2(6a/2/3)C~3 - (14~/~/7)C~ + 2(1051/z/21)C~ 
+ (6~/~/6)Caa - 2(2~/z/3)C~ - 2(61/~/9)C~z + (2~/z/3)C~a 
- 2(3~/~/9)C~ - (2~/2/6)C~ + 2(69~/2/23)C~ 

+ (42~/~/14)C~ - 8(483~'z/161)C~0 

0 = 2(2~'~/3)C~ + (2~'~/3)C~ - 2(2~/2/3)C 7 + (1/3)Cs + 2(5~/~/15)C~ 

+ 2(6~/~/3)Czo - (61/~/3)C~ - 2(6~/2/3)Q~ + (3 - m~)Czs 
- 2(70~/2/35)C~ - (2/3)Ca~ - (1/3)Cao + (2/3)C~z - (2~'2/6)C~, 
- (46~'~/69)C~ + 9(322~/~/161)C~9 
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= 

= 

_(42~/2/9)C5 - 2(42~/2/9)C6 + 2(105~/2/45)C9 - 8(7~/2/21)C~7 
+ 8(71/2/21)C~9 - 2(141/2/7)C~o - 2(141/2/7)Q1 - (14~/2/7)C22 
+ [(59/21) - m2]C24 - 2(30~/2/15)Cz5 - 4(21~/2/21)C37 + (21~2/63)C38 
+ 2(211/2/63)C39 - 2(211/2/21)C4o + 2(7~2/7)C41 - (7~/2/14)C45 
- 10(966~/2/1449)C46 - (14~/2/7)C~7 - (3~/2/14)C48 + (138~2/23)C49 

-2(35~/2/15)C5 + 2(35~/2/15)C6 + (351/2/15)C7 + 2(70~/2/15)C~ 
+ (14~/z/30)C9 + 8(210~/2/105)C17 - 4(210~/2/35)C~8 
+ 4(210~t2/105)C~ + 2(105~2/105)C2o + 2(105~/2/105)C2z 
+ 2(105~z2/21)C2~ - 2(701/~/35)C~a- 2(30~/~/15)Cz~ 
+ [(103/35) - m ~ ] C 2 5  - (701/2/21)Ca8 + (701/z/21)C39 
- (210~/~/42)C~ + (70~/~/42)C~ + (210~/2/21)C~, + 2(35~/e/21)C4, 
+ (210~/z/21)C~ + (805~/z/966)C~n - 9(115~/2/322)Ca~ 
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